Moleküle mit Zeitschalter: Supramolekulare Materialien entsorgen sich selbst

686
Peptid-Synthesizer zur Herstellung molekularer Bausteine für die untersuchten Gele (Bild: Uli Benz / Technische Universität München)

München — Materialien, die sich selbst zusammenfügen und am Ende ihrer Lebenszeit einfach wieder verschwinden – in der Natur gibt es sie in Hülle und Fülle. Forscherinnen und Forschern an der Technischen Universität München (TUM) ist es nun gelungen, supramolekulare Materialien zu entwickeln, die zu einen vorher bestimmten Zeitpunkt wieder zerfallen. Eine Eigenschaft, die zahlreiche Anwendungsmöglichkeiten eröffnet und Abfälle reduzieren würde.

Um Plastikflaschen, leere Dosen, altes Spielzeug, zerrissene T-Shirts und ausgediente Mobiltelefone zu entsorgen, ist Recycling die Methode der Wahl. Doch das ist teuer und aufwändig: Um den Abfall wieder in seine Bestandteile zu zerlegen, muss viel Energie aufgewendet werden“, erklärt Job Boekhoven, Professor für Supramolekulare Chemie an der TU München. Der Chemiker verfolgt einen anderen Weg – und orientiert sich dabei an biologischen Prozessen.

In biologischen Zellen werden die Moleküle ständig recycelt und zum Bau neuer verwendet. Einige dieser Moleküle bilden größere Strukturen, supramolekulare Einheiten, die als Struktur-Bausteine der Zellen dienen. „Diese Dynamik,“ sagt Job Boekhoven, „hat uns dazu inspiriert, Materialien zu entwickeln, die sich selbst entsorgen, wenn sie nicht mehr benötigt werden.“

Übrig bleibt molekularer Staub

Die neuen Materialien, die Boekhoven mit einem interdisziplinären Team von Physikern Chemikern und Ingenieuren an der TUM erforscht, orientieren sich am natürlichen Vorbild: Die molekularen Bausteine sind zunächst frei beweglich. Gibt man jedoch Energie in Form hochenergetischer Moleküle zu, verbinden sie sich zu supramolekulare Strukturen.

Ist die Energie aufgebraucht, zerfallen von selbst. Die Lebensdauer kann dabei durch die zugegebene Menge von Energie vorherbestimmt werden. Im Labor lassen sich die Bedingungen so wählen, dass die Materialien von selbst nach einem bestimmten Zeitraum – Minuten oder Stunden – zerfallen. Und am Ende ihres Lebenszyklus können die Bausteine weitergenutzt werden – einfach indem man wieder hochenergetische Moleküle zugibt.

Zahlreiche Anwendungsmöglichkeiten

Die Wissenschaftler entwarfen verschiedene Anhydride, die sich zu Kolloiden, supramolekularen Hydrogelen oder Tinten zusammensetzen. Angetrieben durch Carbodiimid, das als „Brennstoff“ dabei verbraucht wird, wandelt in diesen Materialien ein chemisches Reaktionsnetzwerk Dicarboxylate in metastabile Anhydride um. Wegen ihres metastabilen Charakters hydrolysieren diese mit Halbwertszeiten im Bereich von Sekunden bis zu einigen Minuten zu ihren ursprünglichen Dicarboxylaten.

Weil sich die Moleküle zu sehr unterschiedlichen Strukturen verbinden, ergeben sich zahlreiche Anwendungsmöglichkeiten: Kugelige Kolloide beispielsweise lassen sich mit wasserunlöslichen Molekülen beladen – man könnte sie nutzen, um Medikamente gegen Krebs direkt zur Tumorzelle zu transportieren. Am Ende ihrer Mission würden sich die Kolloide selbständig auflösen und die Medikamente lokal freisetzen.

Noch ein langer Weg

Andere Bausteine bilden lange, faserigen Strukturen, die Flüssigkeiten in Gele verwandeln. Diese eignen sich möglicherweise, um frisch transplantiertes Gewebe für eine definierte Zeit zu stabilisieren, bis der Körper ihre Funktion übernehmen kann. Und aus Molekülen, die sternförmigen Anordnungen bilden, ließen sich Tinten mit exakt definierter Haltbarkeit herstellen.

Ob es gelingt, nach dem Vorbild der Natur eines Tages auch supramolekulare Maschinen oder Handys zu bauen, die verschwinden, wenn sie nicht mehr benötigt werden? Ausgeschlossen sei dies zwar nicht, meint Boekhoven, „aber bis dahin ist es noch ein langer Weg. Noch arbeiten wir an den Grundlagen.“

Details der Studie sind unter Far-from-equilibrium supramolecular materials with a tunable lifetime; Marta Tena-Solsona, Benedikt Rieß, Raphael K. Grötsch, Franziska C. Löhrer, Caren Wanzke, Benjamin Käsdorf, Andreas R. Bausch, Peter Müller-Buschbaum, Oliver Lieleg, Job Boekhoven; Nature Communications, 18.07.2017 – DOI: 10.1038/NCOMMS15895 zu erfahren. 

Quelle: Technische Universität München