PlimC: Meerwasser-löslicher Kunststoff aus Orangenschalen und CO2

1114
Das Autorenteam: Prof. Dr. Seema Agarwal, Oliver Hauenstein M.Sc. und Prof. Dr. Andreas Greiner (v.l.) vor dem Reaktor zur Polymersynthese (Foto: Christian Wißler; Universität Bayreuth)

Bayreuth — Man nehme Orangenschalen, entziehe ihnen den Naturstoff Limonen, oxidiere ihn und verbinde ihn mit Kohlendioxid: Und schon erhält man einen biobasierten Kunststoff, aus dem sich ohne hohe Kosten umweltfreundliche Funktionsmaterialien für verschiedenste industrielle Anwendungen herstellen lassen. ‚PLimC‘ ist der Name dieses grünen Alleskönners, der es erstmals ermöglicht, allein auf der Basis nachwachsender Rohstoffe ein breites Spektrum leistungsstarker Kunststoffe herzustellen. Dies hat jetzt ein Forschungsteam an der Universität Bayreuth herausgefunden, das seine Ergebnisse im Wissenschaftsmagazin ‚Nature Communications‘ vorstellt.

PLimC ist ein Polycarbonat, das aus einer Synthese von Limonenoxid (Betonung: Limonénoxid) mit Kohlendioxid hervorgeht. So ist gewährleistet, dass es im Unterschied zu herkömmlichen Polycarbonaten nicht die gesundheitsschädliche Substanz Bisphenol A enthält. Zudem bringt der neue bio-basierte Kunststoff eine Reihe von Eigenschaften mit, die ihn für industrielle Anwendungen attraktiv machen: PLimC ist hart, äußerst hitzebeständig und durchsichtig und eignet sich deshalb besonders gut als Material für Beschichtungen. „Diese Erkenntnisse, die wir bereits im vorigen Jahr veröffentlicht haben, konnten wir jetzt mit unserer neuen Studie entscheidend erweitern“, erklärt Prof. Dr. Andreas Greiner, der Leiter des Bayreuther Forschungsteams. „Wir haben an einigen konkreten Beispielen gezeigt, dass sich PLimC hervorragend als Grundstoff eignet, aus dem sich vielseitige Kunststoffe mit sehr spezifischen Eigenschaften entwickeln lassen. PLimC besitzt nämlich eine Doppelbindung, die gezielt für weitere Synthesen genutzt werden kann.“

Vielseitig anzuwenden

Ein Beispiel für solche neuen PLimC-basierten Kunststoffe sind meerwasserlösliche Polymere, die sich im salzigen Meerwasser in ökologisch unbedenkliche Bestandteile auflösen und anschließend zersetzen. Solche Kunststoffe könnten, wenn sie künftig für Flaschen, Tüten oder andere Behälter verwendet werden, der dramatisch ansteigenden Verschmutzung der Meere durch nicht-lösliche Plastik-Partikel entgegenwirken. PLimC ist ebenso ein Grundstoff für hydrophile Polymere. Diese wiederum haben den Vorteil, dass sie eine hohe Wechselwirkung mit Wasser aufweisen und dadurch vergleichsweise schnell von Mikroorganismen abgebaut werden können. Ein anderes Beispiel sind antimikrobielle Polymere, die unter anderem imstande sind, eine Anlagerung von E.Coli-Bakterien zu verhindern. Als Materialien für Behälter, die in der medizinischen Versorgung und Pflege zum Einsatz kommen, können sie das Infektionsrisiko nicht zuletzt in Krankenhäusern deutlich senken. Auch für die Herstellung von Kunststoff-Implantaten, von denen möglichst keine Entzündungsrisiken ausgehen sollen, können solche Polymere interessant sein.

Ökologisch unbedenklich und recycelbar

„Wenn wir gezielt neue Materialien auf der Grundlage von PLimC entwickeln wollen, sind der Phantasie fast keine Grenzen gesetzt“, erklärt Oliver Hauenstein M.Sc., der als Doktorand entscheidende Forschungsarbeiten zur Synthese und Anwendung dieses neuen Kunststoffs geleistet hat. „Die Herstellung von PLimC ist einfach zu handhaben und ausgesprochen umweltfreundlich. Die Schalenabfälle von Unternehmen, die Orangensäfte produzieren, können recycelt werden, und ebenso kann das Treibhausgas CO2 verwertet werden, bevor es in die Atmosphäre entweicht. Zudem sind die vielfältigen Kunststoffe, die auf Basis von PLimC ohne großen technischen oder finanziellen Aufwand synthetisiert werden können, ökologisch unbedenklich und recycelbar.“ Prof. Greiner fügt hinzu: „Die Kunststoff-Industrie steht ja häufig unter dem Verdacht, dass sie ihre technologischen Fortschritte nur mit ökologisch bedenklichen Materialien erzielen kann, was so natürlich nicht richtig ist. Unsere Forschungsergebnisse zeigen klar: Moderne Kunststoffe können umweltfreundlich sein und zugleich sehr hohen technologischen Anforderungen gerecht werden.“

Veröffentlicht unter O. Hauenstein, S. Agarwal and A. Greiner, Bio-based polycarbonate as synthetic toolbox, Nature Communications 2016, DOI: 10.1038/ncomms11862,
nature.com und O. Hauenstein, M. Reiter, S. Agarwal, B. Rieger and A. Greiner, Bio-based polycarbonate from limonene oxide and CO2 with high molecular weight, excellent thermal resistance, hardness and transparency, Green Chem. 2016, 18, 760. DOI: 10.1039/c5gc01694k

Quelle: Universität Bayreuth